指数分布期望方差是怎么证明的

1、首先知道EX=1/a DX=1/a^2

2、指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。

f(x)=0,其他

3、有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)

则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.

EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a

而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,

DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2

即证!

0
纠错

猜你喜欢

指数分布期望方差是怎么证明的
问答乎 m.wendahu.com